Source code for d3rlpy.algos.ddpg

from typing import Any, Dict, Optional, Sequence

from ..argument_utility import (
    ActionScalerArg,
    EncoderArg,
    QFuncArg,
    RewardScalerArg,
    ScalerArg,
    UseGPUArg,
    check_encoder,
    check_q_func,
    check_use_gpu,
)
from ..constants import IMPL_NOT_INITIALIZED_ERROR, ActionSpace
from ..dataset import TransitionMiniBatch
from ..gpu import Device
from ..models.encoders import EncoderFactory
from ..models.optimizers import AdamFactory, OptimizerFactory
from ..models.q_functions import QFunctionFactory
from .base import AlgoBase
from .torch.ddpg_impl import DDPGImpl


[docs]class DDPG(AlgoBase): r"""Deep Deterministic Policy Gradients algorithm. DDPG is an actor-critic algorithm that trains a Q function parametrized with :math:`\theta` and a policy function parametrized with :math:`\phi`. .. math:: L(\theta) = \mathbb{E}_{s_t,\, a_t,\, r_{t+1},\, s_{t+1} \sim D} \Big[(r_{t+1} + \gamma Q_{\theta'}\big(s_{t+1}, \pi_{\phi'}(s_{t+1})) - Q_\theta(s_t, a_t)\big)^2\Big] .. math:: J(\phi) = \mathbb{E}_{s_t \sim D} \Big[Q_\theta\big(s_t, \pi_\phi(s_t)\big)\Big] where :math:`\theta'` and :math:`\phi` are the target network parameters. There target network parameters are updated every iteration. .. math:: \theta' \gets \tau \theta + (1 - \tau) \theta' \phi' \gets \tau \phi + (1 - \tau) \phi' References: * `Silver et al., Deterministic policy gradient algorithms. <http://proceedings.mlr.press/v32/silver14.html>`_ * `Lillicrap et al., Continuous control with deep reinforcement learning. <https://arxiv.org/abs/1509.02971>`_ Args: actor_learning_rate (float): learning rate for policy function. critic_learning_rate (float): learning rate for Q function. actor_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the actor. critic_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the critic. actor_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the actor. critic_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the critic. q_func_factory (d3rlpy.models.q_functions.QFunctionFactory or str): Q function factory. batch_size (int): mini-batch size. n_frames (int): the number of frames to stack for image observation. n_steps (int): N-step TD calculation. gamma (float): discount factor. tau (float): target network synchronization coefficiency. n_critics (int): the number of Q functions for ensemble. target_reduction_type (str): ensemble reduction method at target value estimation. The available options are ``['min', 'max', 'mean', 'mix', 'none']``. use_gpu (bool, int or d3rlpy.gpu.Device): flag to use GPU, device ID or device. scaler (d3rlpy.preprocessing.Scaler or str): preprocessor. The available options are `['pixel', 'min_max', 'standard']` action_scaler (d3rlpy.preprocessing.ActionScaler or str): action preprocessor. The available options are ``['min_max']``. reward_scaler (d3rlpy.preprocessing.RewardScaler or str): reward preprocessor. The available options are ``['clip', 'min_max', 'standard']``. impl (d3rlpy.algos.torch.ddpg_impl.DDPGImpl): algorithm implementation. """ _actor_learning_rate: float _critic_learning_rate: float _actor_optim_factory: OptimizerFactory _critic_optim_factory: OptimizerFactory _actor_encoder_factory: EncoderFactory _critic_encoder_factory: EncoderFactory _q_func_factory: QFunctionFactory _tau: float _n_critics: int _target_reduction_type: str _use_gpu: Optional[Device] _impl: Optional[DDPGImpl] def __init__( self, *, actor_learning_rate: float = 3e-4, critic_learning_rate: float = 3e-4, actor_optim_factory: OptimizerFactory = AdamFactory(), critic_optim_factory: OptimizerFactory = AdamFactory(), actor_encoder_factory: EncoderArg = "default", critic_encoder_factory: EncoderArg = "default", q_func_factory: QFuncArg = "mean", batch_size: int = 100, n_frames: int = 1, n_steps: int = 1, gamma: float = 0.99, tau: float = 0.005, n_critics: int = 1, target_reduction_type: str = "min", use_gpu: UseGPUArg = False, scaler: ScalerArg = None, action_scaler: ActionScalerArg = None, reward_scaler: RewardScalerArg = None, impl: Optional[DDPGImpl] = None, **kwargs: Any ): super().__init__( batch_size=batch_size, n_frames=n_frames, n_steps=n_steps, gamma=gamma, scaler=scaler, action_scaler=action_scaler, reward_scaler=reward_scaler, kwargs=kwargs, ) self._actor_learning_rate = actor_learning_rate self._critic_learning_rate = critic_learning_rate self._actor_optim_factory = actor_optim_factory self._critic_optim_factory = critic_optim_factory self._actor_encoder_factory = check_encoder(actor_encoder_factory) self._critic_encoder_factory = check_encoder(critic_encoder_factory) self._q_func_factory = check_q_func(q_func_factory) self._tau = tau self._n_critics = n_critics self._target_reduction_type = target_reduction_type self._use_gpu = check_use_gpu(use_gpu) self._impl = impl def _create_impl( self, observation_shape: Sequence[int], action_size: int ) -> None: self._impl = DDPGImpl( observation_shape=observation_shape, action_size=action_size, actor_learning_rate=self._actor_learning_rate, critic_learning_rate=self._critic_learning_rate, actor_optim_factory=self._actor_optim_factory, critic_optim_factory=self._critic_optim_factory, actor_encoder_factory=self._actor_encoder_factory, critic_encoder_factory=self._critic_encoder_factory, q_func_factory=self._q_func_factory, gamma=self._gamma, tau=self._tau, n_critics=self._n_critics, target_reduction_type=self._target_reduction_type, use_gpu=self._use_gpu, scaler=self._scaler, action_scaler=self._action_scaler, reward_scaler=self._reward_scaler, ) self._impl.build() def _update(self, batch: TransitionMiniBatch) -> Dict[str, float]: assert self._impl is not None, IMPL_NOT_INITIALIZED_ERROR critic_loss = self._impl.update_critic(batch) actor_loss = self._impl.update_actor(batch) self._impl.update_critic_target() self._impl.update_actor_target() return {"critic_loss": critic_loss, "actor_loss": actor_loss}
[docs] def get_action_type(self) -> ActionSpace: return ActionSpace.CONTINUOUS