Source code for d3rlpy.algos.crr

from typing import Any, Dict, Optional, Sequence

from ..argument_utility import (
    ActionScalerArg,
    EncoderArg,
    QFuncArg,
    RewardScalerArg,
    ScalerArg,
    UseGPUArg,
    check_encoder,
    check_q_func,
    check_use_gpu,
)
from ..constants import IMPL_NOT_INITIALIZED_ERROR, ActionSpace
from ..dataset import TransitionMiniBatch
from ..gpu import Device
from ..models.encoders import EncoderFactory
from ..models.optimizers import AdamFactory, OptimizerFactory
from ..models.q_functions import QFunctionFactory
from .base import AlgoBase
from .torch.crr_impl import CRRImpl


[docs]class CRR(AlgoBase): r"""Critic Reguralized Regression algorithm. CRR is a simple offline RL method similar to AWAC. The policy is trained as a supervised regression. .. math:: J(\phi) = \mathbb{E}_{s_t, a_t \sim D} [\log \pi_\phi(a_t|s_t) f(Q_\theta, \pi_\phi, s_t, a_t)] where :math:`f` is a filter function which has several options. The first option is ``binary`` function. .. math:: f := \mathbb{1} [A_\theta(s, a) > 0] The other is ``exp`` function. .. math:: f := \exp(A(s, a) / \beta) The :math:`A(s, a)` is an average function which also has several options. The first option is ``mean``. .. math:: A(s, a) = Q_\theta (s, a) - \frac{1}{m} \sum^m_j Q(s, a_j) The other one is ``max``. .. math:: A(s, a) = Q_\theta (s, a) - \max^m_j Q(s, a_j) where :math:`a_j \sim \pi_\phi(s)`. In evaluation, the action is determined by Critic Weighted Policy (CWP). In CWP, the several actions are sampled from the policy function, and the final action is re-sampled from the estimated action-value distribution. References: * `Wang et al., Critic Reguralized Regression. <https://arxiv.org/abs/2006.15134>`_ Args: actor_learning_rate (float): learning rate for policy function. critic_learning_rate (float): learning rate for Q functions. actor_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the actor. critic_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the critic. actor_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the actor. critic_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the critic. q_func_factory (d3rlpy.models.q_functions.QFunctionFactory or str): Q function factory. batch_size (int): mini-batch size. n_frames (int): the number of frames to stack for image observation. n_steps (int): N-step TD calculation. gamma (float): discount factor. beta (float): temperature value defined as :math:`\beta` above. n_action_samples (int): the number of sampled actions to calculate :math:`A(s, a)` and for CWP. advantage_type (str): advantage function type. The available options are ``['mean', 'max']``. weight_type (str): filter function type. The available options are ``['binary', 'exp']``. max_weight (float): maximum weight for cross-entropy loss. n_critics (int): the number of Q functions for ensemble. target_reduction_type (str): ensemble reduction method at target value estimation. The available options are ``['min', 'max', 'mean', 'mix', 'none']``. update_actor_interval (int): interval to update policy function. use_gpu (bool, int or d3rlpy.gpu.Device): flag to use GPU, device ID or device. scaler (d3rlpy.preprocessing.Scaler or str): preprocessor. The available options are `['pixel', 'min_max', 'standard']` action_scaler (d3rlpy.preprocessing.ActionScaler or str): action preprocessor. The available options are ``['min_max']``. reward_scaler (d3rlpy.preprocessing.RewardScaler or str): reward preprocessor. The available options are ``['clip', 'min_max', 'standard']``. impl (d3rlpy.algos.torch.crr_impl.CRRImpl): algorithm implementation. """ _actor_learning_rate: float _critic_learning_rate: float _actor_optim_factory: OptimizerFactory _critic_optim_factory: OptimizerFactory _actor_encoder_factory: EncoderFactory _critic_encoder_factory: EncoderFactory _q_func_factory: QFunctionFactory _beta: float _n_action_samples: int _advantage_type: str _weight_type: str _max_weight: float _n_critics: int _target_update_interval: int _target_reduction_type: str _update_actor_interval: int _use_gpu: Optional[Device] _impl: Optional[CRRImpl] def __init__( self, *, actor_learning_rate: float = 3e-4, critic_learning_rate: float = 3e-4, actor_optim_factory: OptimizerFactory = AdamFactory(), critic_optim_factory: OptimizerFactory = AdamFactory(), actor_encoder_factory: EncoderArg = "default", critic_encoder_factory: EncoderArg = "default", q_func_factory: QFuncArg = "mean", batch_size: int = 100, n_frames: int = 1, n_steps: int = 1, gamma: float = 0.99, beta: float = 1.0, n_action_samples: int = 4, advantage_type: str = "mean", weight_type: str = "exp", max_weight: float = 20.0, n_critics: int = 1, target_update_interval: int = 100, target_reduction_type: str = "min", update_actor_interval: int = 1, use_gpu: UseGPUArg = False, scaler: ScalerArg = None, action_scaler: ActionScalerArg = None, reward_scaler: RewardScalerArg = None, impl: Optional[CRRImpl] = None, **kwargs: Any ): super().__init__( batch_size=batch_size, n_frames=n_frames, n_steps=n_steps, gamma=gamma, scaler=scaler, action_scaler=action_scaler, reward_scaler=reward_scaler, kwargs=kwargs, ) self._actor_learning_rate = actor_learning_rate self._critic_learning_rate = critic_learning_rate self._actor_optim_factory = actor_optim_factory self._critic_optim_factory = critic_optim_factory self._actor_encoder_factory = check_encoder(actor_encoder_factory) self._critic_encoder_factory = check_encoder(critic_encoder_factory) self._q_func_factory = check_q_func(q_func_factory) self._beta = beta self._n_action_samples = n_action_samples self._advantage_type = advantage_type self._weight_type = weight_type self._max_weight = max_weight self._n_critics = n_critics self._target_update_interval = target_update_interval self._target_reduction_type = target_reduction_type self._update_actor_interval = update_actor_interval self._use_gpu = check_use_gpu(use_gpu) self._impl = impl def _create_impl( self, observation_shape: Sequence[int], action_size: int ) -> None: self._impl = CRRImpl( observation_shape=observation_shape, action_size=action_size, actor_learning_rate=self._actor_learning_rate, critic_learning_rate=self._critic_learning_rate, actor_optim_factory=self._actor_optim_factory, critic_optim_factory=self._critic_optim_factory, actor_encoder_factory=self._actor_encoder_factory, critic_encoder_factory=self._critic_encoder_factory, q_func_factory=self._q_func_factory, gamma=self._gamma, beta=self._beta, n_action_samples=self._n_action_samples, advantage_type=self._advantage_type, weight_type=self._weight_type, max_weight=self._max_weight, n_critics=self._n_critics, target_reduction_type=self._target_reduction_type, use_gpu=self._use_gpu, scaler=self._scaler, action_scaler=self._action_scaler, reward_scaler=self._reward_scaler, ) self._impl.build() def _update(self, batch: TransitionMiniBatch) -> Dict[str, float]: assert self._impl is not None, IMPL_NOT_INITIALIZED_ERROR critic_loss = self._impl.update_critic(batch) actor_loss = self._impl.update_actor(batch) if self._grad_step % self._target_update_interval == 0: self._impl.update_critic_target() self._impl.update_actor_target() return {"critic_loss": critic_loss, "actor_loss": actor_loss}
[docs] def get_action_type(self) -> ActionSpace: return ActionSpace.CONTINUOUS