Source code for d3rlpy.algos.cql

from typing import Any, Dict, Optional, Sequence

from ..argument_utility import (
    ActionScalerArg,
    EncoderArg,
    QFuncArg,
    RewardScalerArg,
    ScalerArg,
    UseGPUArg,
    check_encoder,
    check_q_func,
    check_use_gpu,
)
from ..constants import IMPL_NOT_INITIALIZED_ERROR, ActionSpace
from ..dataset import TransitionMiniBatch
from ..gpu import Device
from ..models.encoders import EncoderFactory
from ..models.optimizers import AdamFactory, OptimizerFactory
from ..models.q_functions import QFunctionFactory
from .base import AlgoBase
from .dqn import DoubleDQN
from .torch.cql_impl import CQLImpl, DiscreteCQLImpl


[docs]class CQL(AlgoBase): r"""Conservative Q-Learning algorithm. CQL is a SAC-based data-driven deep reinforcement learning algorithm, which achieves state-of-the-art performance in offline RL problems. CQL mitigates overestimation error by minimizing action-values under the current policy and maximizing values under data distribution for underestimation issue. .. math:: L(\theta_i) = \alpha\, \mathbb{E}_{s_t \sim D} \left[\log{\sum_a \exp{Q_{\theta_i}(s_t, a)}} - \mathbb{E}_{a \sim D} \big[Q_{\theta_i}(s, a)\big] - \tau\right] + L_\mathrm{SAC}(\theta_i) where :math:`\alpha` is an automatically adjustable value via Lagrangian dual gradient descent and :math:`\tau` is a threshold value. If the action-value difference is smaller than :math:`\tau`, the :math:`\alpha` will become smaller. Otherwise, the :math:`\alpha` will become larger to aggressively penalize action-values. In continuous control, :math:`\log{\sum_a \exp{Q(s, a)}}` is computed as follows. .. math:: \log{\sum_a \exp{Q(s, a)}} \approx \log{\left( \frac{1}{2N} \sum_{a_i \sim \text{Unif}(a)}^N \left[\frac{\exp{Q(s, a_i)}}{\text{Unif}(a)}\right] + \frac{1}{2N} \sum_{a_i \sim \pi_\phi(a|s)}^N \left[\frac{\exp{Q(s, a_i)}}{\pi_\phi(a_i|s)}\right]\right)} where :math:`N` is the number of sampled actions. The rest of optimization is exactly same as :class:`d3rlpy.algos.SAC`. References: * `Kumar et al., Conservative Q-Learning for Offline Reinforcement Learning. <https://arxiv.org/abs/2006.04779>`_ Args: actor_learning_rate (float): learning rate for policy function. critic_learning_rate (float): learning rate for Q functions. temp_learning_rate (float): learning rate for temperature parameter of SAC. alpha_learning_rate (float): learning rate for :math:`\alpha`. actor_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the actor. critic_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the critic. temp_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the temperature. alpha_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for :math:`\alpha`. actor_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the actor. critic_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the critic. q_func_factory (d3rlpy.models.q_functions.QFunctionFactory or str): Q function factory. batch_size (int): mini-batch size. n_frames (int): the number of frames to stack for image observation. n_steps (int): N-step TD calculation. gamma (float): discount factor. tau (float): target network synchronization coefficiency. n_critics (int): the number of Q functions for ensemble. target_reduction_type (str): ensemble reduction method at target value estimation. The available options are ``['min', 'max', 'mean', 'mix', 'none']``. initial_temperature (float): initial temperature value. initial_alpha (float): initial :math:`\alpha` value. alpha_threshold (float): threshold value described as :math:`\tau`. conservative_weight (float): constant weight to scale conservative loss. n_action_samples (int): the number of sampled actions to compute :math:`\log{\sum_a \exp{Q(s, a)}}`. soft_q_backup (bool): flag to use SAC-style backup. use_gpu (bool, int or d3rlpy.gpu.Device): flag to use GPU, device ID or device. scaler (d3rlpy.preprocessing.Scaler or str): preprocessor. The available options are `['pixel', 'min_max', 'standard']`. action_scaler (d3rlpy.preprocessing.ActionScaler or str): action preprocessor. The available options are ``['min_max']``. reward_scaler (d3rlpy.preprocessing.RewardScaler or str): reward preprocessor. The available options are ``['clip', 'min_max', 'standard']``. impl (d3rlpy.algos.torch.cql_impl.CQLImpl): algorithm implementation. """ _actor_learning_rate: float _critic_learning_rate: float _temp_learning_rate: float _alpha_learning_rate: float _actor_optim_factory: OptimizerFactory _critic_optim_factory: OptimizerFactory _temp_optim_factory: OptimizerFactory _alpha_optim_factory: OptimizerFactory _actor_encoder_factory: EncoderFactory _critic_encoder_factory: EncoderFactory _q_func_factory: QFunctionFactory _tau: float _n_critics: int _target_reduction_type: str _initial_temperature: float _initial_alpha: float _alpha_threshold: float _conservative_weight: float _n_action_samples: int _soft_q_backup: bool _use_gpu: Optional[Device] _impl: Optional[CQLImpl] def __init__( self, *, actor_learning_rate: float = 1e-4, critic_learning_rate: float = 3e-4, temp_learning_rate: float = 1e-4, alpha_learning_rate: float = 1e-4, actor_optim_factory: OptimizerFactory = AdamFactory(), critic_optim_factory: OptimizerFactory = AdamFactory(), temp_optim_factory: OptimizerFactory = AdamFactory(), alpha_optim_factory: OptimizerFactory = AdamFactory(), actor_encoder_factory: EncoderArg = "default", critic_encoder_factory: EncoderArg = "default", q_func_factory: QFuncArg = "mean", batch_size: int = 256, n_frames: int = 1, n_steps: int = 1, gamma: float = 0.99, tau: float = 0.005, n_critics: int = 2, target_reduction_type: str = "min", initial_temperature: float = 1.0, initial_alpha: float = 1.0, alpha_threshold: float = 10.0, conservative_weight: float = 5.0, n_action_samples: int = 10, soft_q_backup: bool = False, use_gpu: UseGPUArg = False, scaler: ScalerArg = None, action_scaler: ActionScalerArg = None, reward_scaler: RewardScalerArg = None, impl: Optional[CQLImpl] = None, **kwargs: Any, ): super().__init__( batch_size=batch_size, n_frames=n_frames, n_steps=n_steps, gamma=gamma, scaler=scaler, action_scaler=action_scaler, reward_scaler=reward_scaler, kwargs=kwargs, ) self._actor_learning_rate = actor_learning_rate self._critic_learning_rate = critic_learning_rate self._temp_learning_rate = temp_learning_rate self._alpha_learning_rate = alpha_learning_rate self._actor_optim_factory = actor_optim_factory self._critic_optim_factory = critic_optim_factory self._temp_optim_factory = temp_optim_factory self._alpha_optim_factory = alpha_optim_factory self._actor_encoder_factory = check_encoder(actor_encoder_factory) self._critic_encoder_factory = check_encoder(critic_encoder_factory) self._q_func_factory = check_q_func(q_func_factory) self._tau = tau self._n_critics = n_critics self._target_reduction_type = target_reduction_type self._initial_temperature = initial_temperature self._initial_alpha = initial_alpha self._alpha_threshold = alpha_threshold self._conservative_weight = conservative_weight self._n_action_samples = n_action_samples self._soft_q_backup = soft_q_backup self._use_gpu = check_use_gpu(use_gpu) self._impl = impl def _create_impl( self, observation_shape: Sequence[int], action_size: int ) -> None: self._impl = CQLImpl( observation_shape=observation_shape, action_size=action_size, actor_learning_rate=self._actor_learning_rate, critic_learning_rate=self._critic_learning_rate, temp_learning_rate=self._temp_learning_rate, alpha_learning_rate=self._alpha_learning_rate, actor_optim_factory=self._actor_optim_factory, critic_optim_factory=self._critic_optim_factory, temp_optim_factory=self._temp_optim_factory, alpha_optim_factory=self._alpha_optim_factory, actor_encoder_factory=self._actor_encoder_factory, critic_encoder_factory=self._critic_encoder_factory, q_func_factory=self._q_func_factory, gamma=self._gamma, tau=self._tau, n_critics=self._n_critics, target_reduction_type=self._target_reduction_type, initial_temperature=self._initial_temperature, initial_alpha=self._initial_alpha, alpha_threshold=self._alpha_threshold, conservative_weight=self._conservative_weight, n_action_samples=self._n_action_samples, soft_q_backup=self._soft_q_backup, use_gpu=self._use_gpu, scaler=self._scaler, action_scaler=self._action_scaler, reward_scaler=self._reward_scaler, ) self._impl.build() def _update(self, batch: TransitionMiniBatch) -> Dict[str, float]: assert self._impl is not None, IMPL_NOT_INITIALIZED_ERROR metrics = {} # lagrangian parameter update for SAC temperature if self._temp_learning_rate > 0: temp_loss, temp = self._impl.update_temp(batch) metrics.update({"temp_loss": temp_loss, "temp": temp}) # lagrangian parameter update for conservative loss weight if self._alpha_learning_rate > 0: alpha_loss, alpha = self._impl.update_alpha(batch) metrics.update({"alpha_loss": alpha_loss, "alpha": alpha}) critic_loss = self._impl.update_critic(batch) metrics.update({"critic_loss": critic_loss}) actor_loss = self._impl.update_actor(batch) metrics.update({"actor_loss": actor_loss}) self._impl.update_critic_target() self._impl.update_actor_target() return metrics
[docs] def get_action_type(self) -> ActionSpace: return ActionSpace.CONTINUOUS
[docs]class DiscreteCQL(DoubleDQN): r"""Discrete version of Conservative Q-Learning algorithm. Discrete version of CQL is a DoubleDQN-based data-driven deep reinforcement learning algorithm (the original paper uses DQN), which achieves state-of-the-art performance in offline RL problems. CQL mitigates overestimation error by minimizing action-values under the current policy and maximizing values under data distribution for underestimation issue. .. math:: L(\theta) = \alpha \mathbb{E}_{s_t \sim D} [\log{\sum_a \exp{Q_{\theta}(s_t, a)}} - \mathbb{E}_{a \sim D} [Q_{\theta}(s, a)]] + L_{DoubleDQN}(\theta) References: * `Kumar et al., Conservative Q-Learning for Offline Reinforcement Learning. <https://arxiv.org/abs/2006.04779>`_ Args: learning_rate (float): learning rate. optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory. encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory. q_func_factory (d3rlpy.models.q_functions.QFunctionFactory or str): Q function factory. batch_size (int): mini-batch size. n_frames (int): the number of frames to stack for image observation. n_steps (int): N-step TD calculation. gamma (float): discount factor. n_critics (int): the number of Q functions for ensemble. target_reduction_type (str): ensemble reduction method at target value estimation. The available options are ``['min', 'max', 'mean', 'mix', 'none']``. target_update_interval (int): interval to synchronize the target network. alpha (float): the :math:`\alpha` value above. use_gpu (bool, int or d3rlpy.gpu.Device): flag to use GPU, device ID or device. scaler (d3rlpy.preprocessing.Scaler or str): preprocessor. The available options are `['pixel', 'min_max', 'standard']` reward_scaler (d3rlpy.preprocessing.RewardScaler or str): reward preprocessor. The available options are ``['clip', 'min_max', 'standard']``. impl (d3rlpy.algos.torch.cql_impl.DiscreteCQLImpl): algorithm implementation. """ _alpha: float _impl: Optional[DiscreteCQLImpl] def __init__( self, *, learning_rate: float = 6.25e-5, optim_factory: OptimizerFactory = AdamFactory(), encoder_factory: EncoderArg = "default", q_func_factory: QFuncArg = "mean", batch_size: int = 32, n_frames: int = 1, n_steps: int = 1, gamma: float = 0.99, n_critics: int = 1, target_reduction_type: str = "min", target_update_interval: int = 8000, alpha: float = 1.0, use_gpu: UseGPUArg = False, scaler: ScalerArg = None, reward_scaler: RewardScalerArg = None, impl: Optional[DiscreteCQLImpl] = None, **kwargs: Any, ): super().__init__( learning_rate=learning_rate, optim_factory=optim_factory, encoder_factory=encoder_factory, q_func_factory=q_func_factory, batch_size=batch_size, n_frames=n_frames, n_steps=n_steps, gamma=gamma, n_critics=n_critics, target_reduction_type=target_reduction_type, target_update_interval=target_update_interval, use_gpu=use_gpu, scaler=scaler, reward_scaler=reward_scaler, impl=impl, **kwargs, ) self._alpha = alpha def _create_impl( self, observation_shape: Sequence[int], action_size: int ) -> None: self._impl = DiscreteCQLImpl( observation_shape=observation_shape, action_size=action_size, learning_rate=self._learning_rate, optim_factory=self._optim_factory, encoder_factory=self._encoder_factory, q_func_factory=self._q_func_factory, gamma=self._gamma, n_critics=self._n_critics, target_reduction_type=self._target_reduction_type, alpha=self._alpha, use_gpu=self._use_gpu, scaler=self._scaler, reward_scaler=self._reward_scaler, ) self._impl.build()