Source code for d3rlpy.algos.combo

from typing import Any, Dict, List, Optional, Sequence

import numpy as np

from ..argument_utility import (
    ActionScalerArg,
    EncoderArg,
    QFuncArg,
    RewardScalerArg,
    ScalerArg,
    UseGPUArg,
    check_encoder,
    check_q_func,
    check_use_gpu,
)
from ..constants import IMPL_NOT_INITIALIZED_ERROR, ActionSpace
from ..dataset import Transition, TransitionMiniBatch
from ..dynamics import DynamicsBase
from ..gpu import Device
from ..models.encoders import EncoderFactory
from ..models.optimizers import AdamFactory, OptimizerFactory
from ..models.q_functions import QFunctionFactory
from .base import AlgoBase
from .torch.combo_impl import COMBOImpl
from .utility import ModelBaseMixin


[docs]class COMBO(ModelBaseMixin, AlgoBase): r"""Conservative Offline Model-Based Optimization. COMBO is a model-based RL approach for offline policy optimization. COMBO is similar to MOPO, but it also leverages conservative loss proposed in CQL. .. math:: L(\theta_i) = \mathbb{E}_{s \sim d_M} \big[\log{\sum_a \exp{Q_{\theta_i}(s_t, a)}}\big] - \mathbb{E}_{s, a \sim D} \big[Q_{\theta_i}(s, a)\big] + L_\mathrm{SAC}(\theta_i) Note: Currently, COMBO only supports vector observations. References: * `Yu et al., COMBO: Conservative Offline Model-Based Policy Optimization. <https://arxiv.org/abs/2102.08363>`_ Args: actor_learning_rate (float): learning rate for policy function. critic_learning_rate (float): learning rate for Q functions. temp_learning_rate (float): learning rate for temperature parameter. actor_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the actor. critic_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the critic. temp_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): optimizer factory for the temperature. actor_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the actor. critic_encoder_factory (d3rlpy.models.encoders.EncoderFactory or str): encoder factory for the critic. q_func_factory (d3rlpy.models.q_functions.QFunctionFactory or str): Q function factory. batch_size (int): mini-batch size. n_frames (int): the number of frames to stack for image observation. n_steps (int): N-step TD calculation. gamma (float): discount factor. tau (float): target network synchronization coefficiency. n_critics (int): the number of Q functions for ensemble. target_reduction_type (str): ensemble reduction method at target value estimation. The available options are ``['min', 'max', 'mean', 'mix', 'none']``. update_actor_interval (int): interval to update policy function. initial_temperature (float): initial temperature value. conservative_weight (float): constant weight to scale conservative loss. n_action_samples (int): the number of sampled actions to compute :math:`\log{\sum_a \exp{Q(s, a)}}`. soft_q_backup (bool): flag to use SAC-style backup. dynamics (d3rlpy.dynamics.DynamicsBase): dynamics object. rollout_interval (int): the number of steps before rollout. rollout_horizon (int): the rollout step length. rollout_batch_size (int): the number of initial transitions for rollout. real_ratio (float): the real of dataset samples in a mini-batch. generated_maxlen (int): the maximum number of generated samples. use_gpu (bool, int or d3rlpy.gpu.Device): flag to use GPU, device ID or device. scaler (d3rlpy.preprocessing.Scaler or str): preprocessor. The available options are `['pixel', 'min_max', 'standard']`. action_scaler (d3rlpy.preprocessing.ActionScaler or str): action preprocessor. The available options are ``['min_max']``. reward_scaler (d3rlpy.preprocessing.RewardScaler or str): reward preprocessor. The available options are ``['clip', 'min_max', 'standard']``. impl (d3rlpy.algos.torch.combo_impl.COMBOImpl): algorithm implementation. """ _actor_learning_rate: float _critic_learning_rate: float _temp_learning_rate: float _actor_optim_factory: OptimizerFactory _critic_optim_factory: OptimizerFactory _temp_optim_factory: OptimizerFactory _actor_encoder_factory: EncoderFactory _critic_encoder_factory: EncoderFactory _q_func_factory: QFunctionFactory _tau: float _n_critics: int _target_reduction_type: str _update_actor_interval: int _initial_temperature: float _conservative_weight: float _n_action_samples: int _soft_q_backup: bool _dynamics: Optional[DynamicsBase] _rollout_interval: int _rollout_horizon: int _rollout_batch_size: int _use_gpu: Optional[Device] _impl: Optional[COMBOImpl] def __init__( self, *, actor_learning_rate: float = 1e-4, critic_learning_rate: float = 3e-4, temp_learning_rate: float = 1e-4, actor_optim_factory: OptimizerFactory = AdamFactory(), critic_optim_factory: OptimizerFactory = AdamFactory(), temp_optim_factory: OptimizerFactory = AdamFactory(), actor_encoder_factory: EncoderArg = "default", critic_encoder_factory: EncoderArg = "default", q_func_factory: QFuncArg = "mean", batch_size: int = 256, n_frames: int = 1, n_steps: int = 1, gamma: float = 0.99, tau: float = 0.005, n_critics: int = 2, target_reduction_type: str = "min", update_actor_interval: int = 1, initial_temperature: float = 1.0, conservative_weight: float = 1.0, n_action_samples: int = 10, soft_q_backup: bool = False, dynamics: Optional[DynamicsBase] = None, rollout_interval: int = 1000, rollout_horizon: int = 5, rollout_batch_size: int = 50000, real_ratio: float = 0.5, generated_maxlen: int = 50000 * 5 * 5, use_gpu: UseGPUArg = False, scaler: ScalerArg = None, action_scaler: ActionScalerArg = None, reward_scaler: RewardScalerArg = None, impl: Optional[COMBOImpl] = None, **kwargs: Any ): super().__init__( batch_size=batch_size, n_frames=n_frames, n_steps=n_steps, gamma=gamma, scaler=scaler, action_scaler=action_scaler, reward_scaler=reward_scaler, real_ratio=real_ratio, generated_maxlen=generated_maxlen, kwargs=kwargs, ) self._actor_learning_rate = actor_learning_rate self._critic_learning_rate = critic_learning_rate self._temp_learning_rate = temp_learning_rate self._actor_optim_factory = actor_optim_factory self._critic_optim_factory = critic_optim_factory self._temp_optim_factory = temp_optim_factory self._actor_encoder_factory = check_encoder(actor_encoder_factory) self._critic_encoder_factory = check_encoder(critic_encoder_factory) self._q_func_factory = check_q_func(q_func_factory) self._tau = tau self._n_critics = n_critics self._target_reduction_type = target_reduction_type self._update_actor_interval = update_actor_interval self._initial_temperature = initial_temperature self._conservative_weight = conservative_weight self._n_action_samples = n_action_samples self._soft_q_backup = soft_q_backup self._dynamics = dynamics self._rollout_interval = rollout_interval self._rollout_horizon = rollout_horizon self._rollout_batch_size = rollout_batch_size self._use_gpu = check_use_gpu(use_gpu) self._impl = impl def _create_impl( self, observation_shape: Sequence[int], action_size: int ) -> None: self._impl = COMBOImpl( observation_shape=observation_shape, action_size=action_size, actor_learning_rate=self._actor_learning_rate, critic_learning_rate=self._critic_learning_rate, temp_learning_rate=self._temp_learning_rate, actor_optim_factory=self._actor_optim_factory, critic_optim_factory=self._critic_optim_factory, temp_optim_factory=self._temp_optim_factory, actor_encoder_factory=self._actor_encoder_factory, critic_encoder_factory=self._critic_encoder_factory, q_func_factory=self._q_func_factory, gamma=self._gamma, tau=self._tau, n_critics=self._n_critics, target_reduction_type=self._target_reduction_type, initial_temperature=self._initial_temperature, conservative_weight=self._conservative_weight, n_action_samples=self._n_action_samples, real_ratio=self._real_ratio, soft_q_backup=self._soft_q_backup, use_gpu=self._use_gpu, scaler=self._scaler, action_scaler=self._action_scaler, reward_scaler=self._reward_scaler, ) self._impl.build() def _update(self, batch: TransitionMiniBatch) -> Dict[str, float]: assert self._impl is not None, IMPL_NOT_INITIALIZED_ERROR metrics = {} critic_loss = self._impl.update_critic(batch) metrics.update({"critic_loss": critic_loss}) # delayed policy update if self._grad_step % self._update_actor_interval == 0: actor_loss = self._impl.update_actor(batch) metrics.update({"actor_loss": actor_loss}) # lagrangian parameter update for SAC temperature if self._temp_learning_rate > 0: temp_loss, temp = self._impl.update_temp(batch) metrics.update({"temp_loss": temp_loss, "temp": temp}) self._impl.update_critic_target() self._impl.update_actor_target() return metrics
[docs] def get_action_type(self) -> ActionSpace: return ActionSpace.CONTINUOUS
def _is_generating_new_data(self) -> bool: return self._grad_step % self._rollout_interval == 0 def _sample_initial_transitions( self, transitions: List[Transition] ) -> List[Transition]: # uniformly sample transitions n_transitions = self._rollout_batch_size indices = np.random.randint(len(transitions), size=n_transitions) return [transitions[i] for i in indices] def _get_rollout_horizon(self) -> int: return self._rollout_horizon