Source code for d3rlpy.algos.qlearning.cql

import dataclasses
import math
from typing import Dict

from ...base import DeviceArg, LearnableConfig, register_learnable
from ...constants import IMPL_NOT_INITIALIZED_ERROR, ActionSpace
from ...dataset import Shape
from ...models.builders import (
    create_continuous_q_function,
    create_discrete_q_function,
    create_parameter,
    create_squashed_normal_policy,
)
from ...models.encoders import EncoderFactory, make_encoder_field
from ...models.optimizers import OptimizerFactory, make_optimizer_field
from ...models.q_functions import QFunctionFactory, make_q_func_field
from ...torch_utility import TorchMiniBatch
from .base import QLearningAlgoBase
from .torch.cql_impl import CQLImpl, DiscreteCQLImpl

__all__ = ["CQLConfig", "CQL", "DiscreteCQLConfig", "DiscreteCQL"]


[docs]@dataclasses.dataclass() class CQLConfig(LearnableConfig): r"""Config of Conservative Q-Learning algorithm. CQL is a SAC-based data-driven deep reinforcement learning algorithm, which achieves state-of-the-art performance in offline RL problems. CQL mitigates overestimation error by minimizing action-values under the current policy and maximizing values under data distribution for underestimation issue. .. math:: L(\theta_i) = \alpha\, \mathbb{E}_{s_t \sim D} \left[\log{\sum_a \exp{Q_{\theta_i}(s_t, a)}} - \mathbb{E}_{a \sim D} \big[Q_{\theta_i}(s_t, a)\big] - \tau\right] + L_\mathrm{SAC}(\theta_i) where :math:`\alpha` is an automatically adjustable value via Lagrangian dual gradient descent and :math:`\tau` is a threshold value. If the action-value difference is smaller than :math:`\tau`, the :math:`\alpha` will become smaller. Otherwise, the :math:`\alpha` will become larger to aggressively penalize action-values. In continuous control, :math:`\log{\sum_a \exp{Q(s, a)}}` is computed as follows. .. math:: \log{\sum_a \exp{Q(s, a)}} \approx \log{\left( \frac{1}{2N} \sum_{a_i \sim \text{Unif}(a)}^N \left[\frac{\exp{Q(s, a_i)}}{\text{Unif}(a)}\right] + \frac{1}{2N} \sum_{a_i \sim \pi_\phi(a|s)}^N \left[\frac{\exp{Q(s, a_i)}}{\pi_\phi(a_i|s)}\right]\right)} where :math:`N` is the number of sampled actions. The rest of optimization is exactly same as :class:`d3rlpy.algos.SAC`. References: * `Kumar et al., Conservative Q-Learning for Offline Reinforcement Learning. <https://arxiv.org/abs/2006.04779>`_ Args: observation_scaler (d3rlpy.preprocessing.ObservationScaler): Observation preprocessor. action_scaler (d3rlpy.preprocessing.ActionScaler): Action preprocessor. reward_scaler (d3rlpy.preprocessing.RewardScaler): Reward preprocessor. actor_learning_rate (float): Learning rate for policy function. critic_learning_rate (float): Learning rate for Q functions. temp_learning_rate (float): Learning rate for temperature parameter of SAC. alpha_learning_rate (float): Learning rate for :math:`\alpha`. actor_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): Optimizer factory for the actor. critic_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): Optimizer factory for the critic. temp_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): Optimizer factory for the temperature. alpha_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): Optimizer factory for :math:`\alpha`. actor_encoder_factory (d3rlpy.models.encoders.EncoderFactory): Encoder factory for the actor. critic_encoder_factory (d3rlpy.models.encoders.EncoderFactory): Encoder factory for the critic. q_func_factory (d3rlpy.models.q_functions.QFunctionFactory): Q function factory. batch_size (int): Mini-batch size. gamma (float): Discount factor. tau (float): Target network synchronization coefficiency. n_critics (int): Number of Q functions for ensemble. initial_temperature (float): Initial temperature value. initial_alpha (float): Initial :math:`\alpha` value. alpha_threshold (float): Threshold value described as :math:`\tau`. conservative_weight (float): Constant weight to scale conservative loss. n_action_samples (int): Number of sampled actions to compute :math:`\log{\sum_a \exp{Q(s, a)}}`. soft_q_backup (bool): Flag to use SAC-style backup. """ actor_learning_rate: float = 1e-4 critic_learning_rate: float = 3e-4 temp_learning_rate: float = 1e-4 alpha_learning_rate: float = 1e-4 actor_optim_factory: OptimizerFactory = make_optimizer_field() critic_optim_factory: OptimizerFactory = make_optimizer_field() temp_optim_factory: OptimizerFactory = make_optimizer_field() alpha_optim_factory: OptimizerFactory = make_optimizer_field() actor_encoder_factory: EncoderFactory = make_encoder_field() critic_encoder_factory: EncoderFactory = make_encoder_field() q_func_factory: QFunctionFactory = make_q_func_field() batch_size: int = 256 gamma: float = 0.99 tau: float = 0.005 n_critics: int = 2 initial_temperature: float = 1.0 initial_alpha: float = 1.0 alpha_threshold: float = 10.0 conservative_weight: float = 5.0 n_action_samples: int = 10 soft_q_backup: bool = False
[docs] def create(self, device: DeviceArg = False) -> "CQL": return CQL(self, device)
@staticmethod def get_type() -> str: return "cql"
[docs]class CQL(QLearningAlgoBase[CQLImpl, CQLConfig]): def inner_create_impl( self, observation_shape: Shape, action_size: int ) -> None: policy = create_squashed_normal_policy( observation_shape, action_size, self._config.actor_encoder_factory, device=self._device, ) q_func = create_continuous_q_function( observation_shape, action_size, self._config.critic_encoder_factory, self._config.q_func_factory, n_ensembles=self._config.n_critics, device=self._device, ) log_temp = create_parameter( (1, 1), math.log(self._config.initial_temperature), device=self._device, ) log_alpha = create_parameter( (1, 1), math.log(self._config.initial_alpha), device=self._device ) actor_optim = self._config.actor_optim_factory.create( policy.parameters(), lr=self._config.actor_learning_rate ) critic_optim = self._config.critic_optim_factory.create( q_func.parameters(), lr=self._config.critic_learning_rate ) temp_optim = self._config.temp_optim_factory.create( log_temp.parameters(), lr=self._config.temp_learning_rate ) alpha_optim = self._config.alpha_optim_factory.create( log_alpha.parameters(), lr=self._config.alpha_learning_rate ) self._impl = CQLImpl( observation_shape=observation_shape, action_size=action_size, policy=policy, q_func=q_func, log_temp=log_temp, log_alpha=log_alpha, actor_optim=actor_optim, critic_optim=critic_optim, temp_optim=temp_optim, alpha_optim=alpha_optim, gamma=self._config.gamma, tau=self._config.tau, alpha_threshold=self._config.alpha_threshold, conservative_weight=self._config.conservative_weight, n_action_samples=self._config.n_action_samples, soft_q_backup=self._config.soft_q_backup, device=self._device, )
[docs] def inner_update(self, batch: TorchMiniBatch) -> Dict[str, float]: assert self._impl is not None, IMPL_NOT_INITIALIZED_ERROR metrics = {} # lagrangian parameter update for SAC temperature if self._config.temp_learning_rate > 0: temp_loss, temp = self._impl.update_temp(batch) metrics.update({"temp_loss": temp_loss, "temp": temp}) # lagrangian parameter update for conservative loss weight if self._config.alpha_learning_rate > 0: alpha_loss, alpha = self._impl.update_alpha(batch) metrics.update({"alpha_loss": alpha_loss, "alpha": alpha}) critic_loss = self._impl.update_critic(batch) metrics.update({"critic_loss": critic_loss}) actor_loss = self._impl.update_actor(batch) metrics.update({"actor_loss": actor_loss}) self._impl.update_critic_target() self._impl.update_actor_target() return metrics
[docs] def get_action_type(self) -> ActionSpace: return ActionSpace.CONTINUOUS
[docs]@dataclasses.dataclass() class DiscreteCQLConfig(LearnableConfig): r"""Config of Discrete version of Conservative Q-Learning algorithm. Discrete version of CQL is a DoubleDQN-based data-driven deep reinforcement learning algorithm (the original paper uses DQN), which achieves state-of-the-art performance in offline RL problems. CQL mitigates overestimation error by minimizing action-values under the current policy and maximizing values under data distribution for underestimation issue. .. math:: L(\theta) = \alpha \mathbb{E}_{s_t \sim D} [\log{\sum_a \exp{Q_{\theta}(s_t, a)}} - \mathbb{E}_{a \sim D} [Q_{\theta}(s, a)]] + L_{DoubleDQN}(\theta) References: * `Kumar et al., Conservative Q-Learning for Offline Reinforcement Learning. <https://arxiv.org/abs/2006.04779>`_ Args: observation_scaler (d3rlpy.preprocessing.ObservationScaler): Observation preprocessor. reward_scaler (d3rlpy.preprocessing.RewardScaler): Reward preprocessor. learning_rate (float): Learning rate. optim_factory (d3rlpy.models.optimizers.OptimizerFactory): Optimizer factory. encoder_factory (d3rlpy.models.encoders.EncoderFactory): Encoder factory. q_func_factory (d3rlpy.models.q_functions.QFunctionFactory): Q function factory. batch_size (int): Mini-batch size. gamma (float): Discount factor. n_critics (int): Number of Q functions for ensemble. target_update_interval (int): Interval to synchronize the target network. alpha (float): math:`\alpha` value above. """ learning_rate: float = 6.25e-5 optim_factory: OptimizerFactory = make_optimizer_field() encoder_factory: EncoderFactory = make_encoder_field() q_func_factory: QFunctionFactory = make_q_func_field() batch_size: int = 32 gamma: float = 0.99 n_critics: int = 1 target_update_interval: int = 8000 alpha: float = 1.0
[docs] def create(self, device: DeviceArg = False) -> "DiscreteCQL": return DiscreteCQL(self, device)
@staticmethod def get_type() -> str: return "discrete_cql"
[docs]class DiscreteCQL(QLearningAlgoBase[DiscreteCQLImpl, DiscreteCQLConfig]): def inner_create_impl( self, observation_shape: Shape, action_size: int ) -> None: q_func = create_discrete_q_function( observation_shape, action_size, self._config.encoder_factory, self._config.q_func_factory, n_ensembles=self._config.n_critics, device=self._device, ) optim = self._config.optim_factory.create( q_func.parameters(), lr=self._config.learning_rate ) self._impl = DiscreteCQLImpl( observation_shape=observation_shape, action_size=action_size, q_func=q_func, optim=optim, gamma=self._config.gamma, alpha=self._config.alpha, device=self._device, )
[docs] def inner_update(self, batch: TorchMiniBatch) -> Dict[str, float]: assert self._impl is not None, IMPL_NOT_INITIALIZED_ERROR loss, conservative_loss = self._impl.update(batch) if self._grad_step % self._config.target_update_interval == 0: self._impl.update_target() return {"loss": loss, "conservative_loss": conservative_loss}
[docs] def get_action_type(self) -> ActionSpace: return ActionSpace.DISCRETE
register_learnable(CQLConfig) register_learnable(DiscreteCQLConfig)