Source code for d3rlpy.metrics.evaluators

from typing import Iterator, Optional, Sequence

import numpy as np
from typing_extensions import Protocol

from ..dataset import (
    EpisodeBase,
    ReplayBufferBase,
    TransitionMiniBatch,
    TransitionPickerProtocol,
)
from ..interface import QLearningAlgoProtocol
from ..types import GymEnv
from .utility import evaluate_qlearning_with_environment

__all__ = [
    "EvaluatorProtocol",
    "make_batches",
    "TDErrorEvaluator",
    "DiscountedSumOfAdvantageEvaluator",
    "AverageValueEstimationEvaluator",
    "InitialStateValueEstimationEvaluator",
    "SoftOPCEvaluator",
    "ContinuousActionDiffEvaluator",
    "DiscreteActionMatchEvaluator",
    "CompareContinuousActionDiffEvaluator",
    "CompareDiscreteActionMatchEvaluator",
    "EnvironmentEvaluator",
]


WINDOW_SIZE = 1024


class EvaluatorProtocol(Protocol):
    def __call__(
        self,
        algo: QLearningAlgoProtocol,
        dataset: ReplayBufferBase,
    ) -> float:
        """Computes metrics.

        Args:
            algo: Q-learning algorithm.
            dataset: ReplayBuffer.

        Returns:
            Computed metrics.
        """
        raise NotImplementedError


def make_batches(
    episode: EpisodeBase,
    window_size: int,
    transition_picker: TransitionPickerProtocol,
) -> Iterator[TransitionMiniBatch]:
    n_batches = len(episode) // window_size
    if len(episode) % window_size != 0:
        n_batches += 1
    for i in range(n_batches):
        head_index = i * window_size
        last_index = min(head_index + window_size, episode.transition_count)
        transitions = [
            transition_picker(episode, index)
            for index in range(head_index, last_index)
        ]
        batch = TransitionMiniBatch.from_transitions(transitions)
        yield batch


[docs]class TDErrorEvaluator(EvaluatorProtocol): r"""Returns average TD error. This metric suggests how Q functions overfit to training sets. If the TD error is large, the Q functions are overfitting. .. math:: \mathbb{E}_{s_t, a_t, r_{t+1}, s_{t+1} \sim D} [(Q_\theta (s_t, a_t) - r_{t+1} - \gamma \max_a Q_\theta (s_{t+1}, a))^2] Args: episodes: Optional evaluation episodes. If it's not given, dataset used in training will be used. """ _episodes: Optional[Sequence[EpisodeBase]] def __init__(self, episodes: Optional[Sequence[EpisodeBase]] = None): self._episodes = episodes
[docs] def __call__( self, algo: QLearningAlgoProtocol, dataset: ReplayBufferBase, ) -> float: total_errors = [] episodes = self._episodes if self._episodes else dataset.episodes for episode in episodes: for batch in make_batches( episode, WINDOW_SIZE, dataset.transition_picker ): # estimate values for current observations values = algo.predict_value(batch.observations, batch.actions) # estimate values for next observations next_actions = algo.predict(batch.next_observations) next_values = algo.predict_value( batch.next_observations, next_actions ) # calculate td errors mask = (1.0 - batch.terminals).reshape(-1) rewards = np.asarray(batch.rewards).reshape(-1) if algo.reward_scaler: rewards = algo.reward_scaler.transform_numpy(rewards) y = rewards + algo.gamma * next_values * mask total_errors += ((values - y) ** 2).tolist() return float(np.mean(total_errors))
[docs]class DiscountedSumOfAdvantageEvaluator(EvaluatorProtocol): r"""Returns average of discounted sum of advantage. This metric suggests how the greedy-policy selects different actions in action-value space. If the sum of advantage is small, the policy selects actions with larger estimated action-values. .. math:: \mathbb{E}_{s_t, a_t \sim D} [\sum_{t' = t} \gamma^{t' - t} A(s_{t'}, a_{t'})] where :math:`A(s_t, a_t) = Q_\theta (s_t, a_t) - \mathbb{E}_{a \sim \pi} [Q_\theta (s_t, a)]`. References: * `Murphy., A generalization error for Q-Learning. <http://www.jmlr.org/papers/volume6/murphy05a/murphy05a.pdf>`_ Args: episodes: Optional evaluation episodes. If it's not given, dataset used in training will be used. """ _episodes: Optional[Sequence[EpisodeBase]] def __init__(self, episodes: Optional[Sequence[EpisodeBase]] = None): self._episodes = episodes
[docs] def __call__( self, algo: QLearningAlgoProtocol, dataset: ReplayBufferBase, ) -> float: total_sums = [] episodes = self._episodes if self._episodes else dataset.episodes for episode in episodes: for batch in make_batches( episode, WINDOW_SIZE, dataset.transition_picker ): # estimate values for dataset actions dataset_values = algo.predict_value( batch.observations, batch.actions ) # estimate values for the current policy actions = algo.predict(batch.observations) on_policy_values = algo.predict_value( batch.observations, actions ) # calculate advantages advantages = (dataset_values - on_policy_values).tolist() # calculate discounted sum of advantages A = advantages[-1] sum_advantages = [A] for advantage in reversed(advantages[:-1]): A = advantage + algo.gamma * A sum_advantages.append(A) total_sums += sum_advantages # smaller is better return float(np.mean(total_sums))
[docs]class AverageValueEstimationEvaluator(EvaluatorProtocol): r"""Returns average value estimation. This metric suggests the scale for estimation of Q functions. If average value estimation is too large, the Q functions overestimate action-values, which possibly makes training failed. .. math:: \mathbb{E}_{s_t \sim D} [ \max_a Q_\theta (s_t, a)] Args: episodes: Optional evaluation episodes. If it's not given, dataset used in training will be used. """ _episodes: Optional[Sequence[EpisodeBase]] def __init__(self, episodes: Optional[Sequence[EpisodeBase]] = None): self._episodes = episodes
[docs] def __call__( self, algo: QLearningAlgoProtocol, dataset: ReplayBufferBase, ) -> float: total_values = [] episodes = self._episodes if self._episodes else dataset.episodes for episode in episodes: for batch in make_batches( episode, WINDOW_SIZE, dataset.transition_picker ): actions = algo.predict(batch.observations) values = algo.predict_value(batch.observations, actions) total_values += values.tolist() return float(np.mean(total_values))
[docs]class InitialStateValueEstimationEvaluator(EvaluatorProtocol): r"""Returns mean estimated action-values at the initial states. This metric suggests how much return the trained policy would get from the initial states by deploying the policy to the states. If the estimated value is large, the trained policy is expected to get higher returns. .. math:: \mathbb{E}_{s_0 \sim D} [Q(s_0, \pi(s_0))] References: * `Paine et al., Hyperparameter Selection for Offline Reinforcement Learning <https://arxiv.org/abs/2007.09055>`_ Args: episodes: Optional evaluation episodes. If it's not given, dataset used in training will be used. """ _episodes: Optional[Sequence[EpisodeBase]] def __init__(self, episodes: Optional[Sequence[EpisodeBase]] = None): self._episodes = episodes
[docs] def __call__( self, algo: QLearningAlgoProtocol, dataset: ReplayBufferBase, ) -> float: total_values = [] episodes = self._episodes if self._episodes else dataset.episodes for episode in episodes: for batch in make_batches( episode, WINDOW_SIZE, dataset.transition_picker ): # estimate action-value in initial states first_obs = np.expand_dims(batch.observations[0], axis=0) actions = algo.predict(first_obs) values = algo.predict_value(first_obs, actions) total_values.append(values[0]) return float(np.mean(total_values))
[docs]class SoftOPCEvaluator(EvaluatorProtocol): r"""Returns Soft Off-Policy Classification metrics. The metric of the scorer funciton is evaluating gaps of action-value estimation between the success episodes and the all episodes. If the learned Q-function is optimal, action-values in success episodes are expected to be higher than the others. The success episode is defined as an episode with a return above the given threshold. .. math:: \mathbb{E}_{s, a \sim D_{success}} [Q(s, a)] - \mathbb{E}_{s, a \sim D} [Q(s, a)] References: * `Irpan et al., Off-Policy Evaluation via Off-Policy Classification. <https://arxiv.org/abs/1906.01624>`_ Args: return_threshold: Return threshold of success episodes. episodes: Optional evaluation episodes. If it's not given, dataset used in training will be used. """ _return_threshold: float _episodes: Optional[Sequence[EpisodeBase]] def __init__( self, return_threshold: float, episodes: Optional[Sequence[EpisodeBase]] = None, ): self._return_threshold = return_threshold self._episodes = episodes
[docs] def __call__( self, algo: QLearningAlgoProtocol, dataset: ReplayBufferBase, ) -> float: success_values = [] all_values = [] episodes = self._episodes if self._episodes else dataset.episodes for episode in episodes: is_success = episode.compute_return() >= self._return_threshold for batch in make_batches( episode, WINDOW_SIZE, dataset.transition_picker ): values = algo.predict_value(batch.observations, batch.actions) all_values += values.reshape(-1).tolist() if is_success: success_values += values.reshape(-1).tolist() return float(np.mean(success_values) - np.mean(all_values))
[docs]class ContinuousActionDiffEvaluator(EvaluatorProtocol): r"""Returns squared difference of actions between algorithm and dataset. This metric suggests how different the greedy-policy is from the given episodes in continuous action-space. If the given episodes are near-optimal, the small action difference would be better. .. math:: \mathbb{E}_{s_t, a_t \sim D} [(a_t - \pi_\phi (s_t))^2] Args: episodes: Optional evaluation episodes. If it's not given, dataset used in training will be used. """ _episodes: Optional[Sequence[EpisodeBase]] def __init__(self, episodes: Optional[Sequence[EpisodeBase]] = None): self._episodes = episodes
[docs] def __call__( self, algo: QLearningAlgoProtocol, dataset: ReplayBufferBase, ) -> float: total_diffs = [] episodes = self._episodes if self._episodes else dataset.episodes for episode in episodes: for batch in make_batches( episode, WINDOW_SIZE, dataset.transition_picker ): actions = algo.predict(batch.observations) diff = ((batch.actions - actions) ** 2).sum(axis=1).tolist() total_diffs += diff return float(np.mean(total_diffs))
[docs]class DiscreteActionMatchEvaluator(EvaluatorProtocol): r"""Returns percentage of identical actions between algorithm and dataset. This metric suggests how different the greedy-policy is from the given episodes in discrete action-space. If the given episdoes are near-optimal, the large percentage would be better. .. math:: \frac{1}{N} \sum^N \parallel \{a_t = \text{argmax}_a Q_\theta (s_t, a)\} Args: episodes: Optional evaluation episodes. If it's not given, dataset used in training will be used. """ _episodes: Optional[Sequence[EpisodeBase]] def __init__(self, episodes: Optional[Sequence[EpisodeBase]] = None): self._episodes = episodes
[docs] def __call__( self, algo: QLearningAlgoProtocol, dataset: ReplayBufferBase, ) -> float: total_matches = [] episodes = self._episodes if self._episodes else dataset.episodes for episode in episodes: for batch in make_batches( episode, WINDOW_SIZE, dataset.transition_picker ): actions = algo.predict(batch.observations) match = (batch.actions.reshape(-1) == actions).tolist() total_matches += match return float(np.mean(total_matches))
[docs]class CompareContinuousActionDiffEvaluator(EvaluatorProtocol): r"""Action difference between algorithms. This metric suggests how different the two algorithms are in continuous action-space. If the algorithm to compare with is near-optimal, the small action difference would be better. .. math:: \mathbb{E}_{s_t \sim D} [(\pi_{\phi_1}(s_t) - \pi_{\phi_2}(s_t))^2] Args: base_algo: Target algorithm to comapre with. episodes: Optional evaluation episodes. If it's not given, dataset used in training will be used. """ _base_algo: QLearningAlgoProtocol _episodes: Optional[Sequence[EpisodeBase]] def __init__( self, base_algo: QLearningAlgoProtocol, episodes: Optional[Sequence[EpisodeBase]] = None, ): self._base_algo = base_algo self._episodes = episodes
[docs] def __call__( self, algo: QLearningAlgoProtocol, dataset: ReplayBufferBase, ) -> float: total_diffs = [] episodes = self._episodes if self._episodes else dataset.episodes for episode in episodes: # TODO: handle different n_frames for batch in make_batches( episode, WINDOW_SIZE, dataset.transition_picker ): base_actions = self._base_algo.predict(batch.observations) actions = algo.predict(batch.observations) diff = ((actions - base_actions) ** 2).sum(axis=1).tolist() total_diffs += diff return float(np.mean(total_diffs))
[docs]class CompareDiscreteActionMatchEvaluator(EvaluatorProtocol): r"""Action matches between algorithms. This metric suggests how different the two algorithms are in discrete action-space. If the algorithm to compare with is near-optimal, the small action difference would be better. .. math:: \mathbb{E}_{s_t \sim D} [\parallel \{\text{argmax}_a Q_{\theta_1}(s_t, a) = \text{argmax}_a Q_{\theta_2}(s_t, a)\}] Args: base_algo: Target algorithm to comapre with. episodes: Optional evaluation episodes. If it's not given, dataset used in training will be used. """ _base_algo: QLearningAlgoProtocol _episodes: Optional[Sequence[EpisodeBase]] def __init__( self, base_algo: QLearningAlgoProtocol, episodes: Optional[Sequence[EpisodeBase]] = None, ): self._base_algo = base_algo self._episodes = episodes
[docs] def __call__( self, algo: QLearningAlgoProtocol, dataset: ReplayBufferBase ) -> float: total_matches = [] episodes = self._episodes if self._episodes else dataset.episodes for episode in episodes: # TODO: handle different n_frames for batch in make_batches( episode, WINDOW_SIZE, dataset.transition_picker ): base_actions = self._base_algo.predict(batch.observations) actions = algo.predict(batch.observations) match = (base_actions == actions).tolist() total_matches += match return float(np.mean(total_matches))
[docs]class EnvironmentEvaluator(EvaluatorProtocol): r"""Action matches between algorithms. This metric suggests how different the two algorithms are in discrete action-space. If the algorithm to compare with is near-optimal, the small action difference would be better. .. math:: \mathbb{E}_{s_t \sim D} [\parallel \{\text{argmax}_a Q_{\theta_1}(s_t, a) = \text{argmax}_a Q_{\theta_2}(s_t, a)\}] Args: env: Gym environment. n_trials: Number of episodes to evaluate. epsilon: Probability of random action. """ _env: GymEnv _n_trials: int _epsilon: float def __init__( self, env: GymEnv, n_trials: int = 10, epsilon: float = 0.0, ): self._env = env self._n_trials = n_trials self._epsilon = epsilon
[docs] def __call__( self, algo: QLearningAlgoProtocol, dataset: ReplayBufferBase ) -> float: return evaluate_qlearning_with_environment( algo=algo, env=self._env, n_trials=self._n_trials, epsilon=self._epsilon, )