Source code for d3rlpy.algos.qlearning.iql

import dataclasses

from ...base import DeviceArg, LearnableConfig, register_learnable
from ...constants import ActionSpace
from ...models.builders import (
    create_continuous_q_function,
    create_normal_policy,
    create_value_function,
)
from ...models.encoders import EncoderFactory, make_encoder_field
from ...models.optimizers import OptimizerFactory, make_optimizer_field
from ...models.q_functions import MeanQFunctionFactory
from ...types import Shape
from .base import QLearningAlgoBase
from .torch.iql_impl import IQLImpl, IQLModules

__all__ = ["IQLConfig", "IQL"]


[docs]@dataclasses.dataclass() class IQLConfig(LearnableConfig): r"""Implicit Q-Learning algorithm. IQL is the offline RL algorithm that avoids ever querying values of unseen actions while still being able to perform multi-step dynamic programming updates. There are three functions to train in IQL. First the state-value function is trained via expectile regression. .. math:: L_V(\psi) = \mathbb{E}_{(s, a) \sim D} [L_2^\tau (Q_\theta (s, a) - V_\psi (s))] where :math:`L_2^\tau (u) = |\tau - \mathbb{1}(u < 0)|u^2`. The Q-function is trained with the state-value function to avoid query the actions. .. math:: L_Q(\theta) = \mathbb{E}_{(s, a, r, s') \sim D} [(r + \gamma V_\psi(s') - Q_\theta(s, a))^2] Finally, the policy function is trained by using advantage weighted regression. .. math:: L_\pi (\phi) = \mathbb{E}_{(s, a) \sim D} [\exp(\beta (Q_\theta - V_\psi(s))) \log \pi_\phi(a|s)] References: * `Kostrikov et al., Offline Reinforcement Learning with Implicit Q-Learning. <https://arxiv.org/abs/2110.06169>`_ Args: observation_scaler (d3rlpy.preprocessing.ObservationScaler): Observation preprocessor. action_scaler (d3rlpy.preprocessing.ActionScaler): Action preprocessor. reward_scaler (d3rlpy.preprocessing.RewardScaler): Reward preprocessor. actor_learning_rate (float): Learning rate for policy function. critic_learning_rate (float): Learning rate for Q functions. actor_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): Optimizer factory for the actor. critic_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): Optimizer factory for the critic. actor_encoder_factory (d3rlpy.models.encoders.EncoderFactory): Encoder factory for the actor. critic_encoder_factory (d3rlpy.models.encoders.EncoderFactory): Encoder factory for the critic. value_encoder_factory (d3rlpy.models.encoders.EncoderFactory): Encoder factory for the value function. batch_size (int): Mini-batch size. gamma (float): Discount factor. tau (float): Target network synchronization coefficiency. n_critics (int): Number of Q functions for ensemble. expectile (float): Expectile value for value function training. weight_temp (float): Inverse temperature value represented as :math:`\beta`. max_weight (float): Maximum advantage weight value to clip. """ actor_learning_rate: float = 3e-4 critic_learning_rate: float = 3e-4 actor_optim_factory: OptimizerFactory = make_optimizer_field() critic_optim_factory: OptimizerFactory = make_optimizer_field() actor_encoder_factory: EncoderFactory = make_encoder_field() critic_encoder_factory: EncoderFactory = make_encoder_field() value_encoder_factory: EncoderFactory = make_encoder_field() batch_size: int = 256 gamma: float = 0.99 tau: float = 0.005 n_critics: int = 2 expectile: float = 0.7 weight_temp: float = 3.0 max_weight: float = 100.0
[docs] def create(self, device: DeviceArg = False) -> "IQL": return IQL(self, device)
@staticmethod def get_type() -> str: return "iql"
[docs]class IQL(QLearningAlgoBase[IQLImpl, IQLConfig]): def inner_create_impl( self, observation_shape: Shape, action_size: int ) -> None: policy = create_normal_policy( observation_shape, action_size, self._config.actor_encoder_factory, min_logstd=-5.0, max_logstd=2.0, use_std_parameter=True, device=self._device, ) q_funcs, q_func_forwarder = create_continuous_q_function( observation_shape, action_size, self._config.critic_encoder_factory, MeanQFunctionFactory(), n_ensembles=self._config.n_critics, device=self._device, ) targ_q_funcs, targ_q_func_forwarder = create_continuous_q_function( observation_shape, action_size, self._config.critic_encoder_factory, MeanQFunctionFactory(), n_ensembles=self._config.n_critics, device=self._device, ) value_func = create_value_function( observation_shape, self._config.value_encoder_factory, device=self._device, ) actor_optim = self._config.actor_optim_factory.create( policy.named_modules(), lr=self._config.actor_learning_rate ) q_func_params = list(q_funcs.named_modules()) v_func_params = list(value_func.named_modules()) critic_optim = self._config.critic_optim_factory.create( q_func_params + v_func_params, lr=self._config.critic_learning_rate ) modules = IQLModules( policy=policy, q_funcs=q_funcs, targ_q_funcs=targ_q_funcs, value_func=value_func, actor_optim=actor_optim, critic_optim=critic_optim, ) self._impl = IQLImpl( observation_shape=observation_shape, action_size=action_size, modules=modules, q_func_forwarder=q_func_forwarder, targ_q_func_forwarder=targ_q_func_forwarder, gamma=self._config.gamma, tau=self._config.tau, expectile=self._config.expectile, weight_temp=self._config.weight_temp, max_weight=self._config.max_weight, device=self._device, )
[docs] def get_action_type(self) -> ActionSpace: return ActionSpace.CONTINUOUS
register_learnable(IQLConfig)