Source code for d3rlpy.algos.qlearning.crr

import dataclasses

from ...base import DeviceArg, LearnableConfig, register_learnable
from ...constants import ActionSpace
from ...models.builders import (
    create_continuous_q_function,
    create_normal_policy,
)
from ...models.encoders import EncoderFactory, make_encoder_field
from ...models.optimizers import OptimizerFactory, make_optimizer_field
from ...models.q_functions import QFunctionFactory, make_q_func_field
from ...types import Shape
from .base import QLearningAlgoBase
from .torch.crr_impl import CRRImpl, CRRModules

__all__ = ["CRRConfig", "CRR"]


[docs]@dataclasses.dataclass() class CRRConfig(LearnableConfig): r"""Config of Critic Reguralized Regression algorithm. CRR is a simple offline RL method similar to AWAC. The policy is trained as a supervised regression. .. math:: J(\phi) = \mathbb{E}_{s_t, a_t \sim D} [\log \pi_\phi(a_t|s_t) f(Q_\theta, \pi_\phi, s_t, a_t)] where :math:`f` is a filter function which has several options. The first option is ``binary`` function. .. math:: f := \mathbb{1} [A_\theta(s, a) > 0] The other is ``exp`` function. .. math:: f := \exp(A(s, a) / \beta) The :math:`A(s, a)` is an average function which also has several options. The first option is ``mean``. .. math:: A(s, a) = Q_\theta (s, a) - \frac{1}{m} \sum^m_j Q(s, a_j) The other one is ``max``. .. math:: A(s, a) = Q_\theta (s, a) - \max^m_j Q(s, a_j) where :math:`a_j \sim \pi_\phi(s)`. In evaluation, the action is determined by Critic Weighted Policy (CWP). In CWP, the several actions are sampled from the policy function, and the final action is re-sampled from the estimated action-value distribution. References: * `Wang et al., Critic Reguralized Regression. <https://arxiv.org/abs/2006.15134>`_ Args: observation_scaler (d3rlpy.preprocessing.ObservationScaler): Observation preprocessor. action_scaler (d3rlpy.preprocessing.ActionScaler): Action preprocessor. reward_scaler (d3rlpy.preprocessing.RewardScaler): Reward preprocessor. actor_learning_rate (float): Learning rate for policy function. critic_learning_rate (float): Learning rate for Q functions. actor_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): Optimizer factory for the actor. critic_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): Optimizer factory for the critic. actor_encoder_factory (d3rlpy.models.encoders.EncoderFactory): Encoder factory for the actor. critic_encoder_factory (d3rlpy.models.encoders.EncoderFactory): Encoder factory for the critic. q_func_factory (d3rlpy.models.q_functions.QFunctionFactory): Q function factory. batch_size (int): Mini-batch size. gamma (float): Discount factor. beta (float): Temperature value defined as :math:`\beta` above. n_action_samples (int): Number of sampled actions to calculate :math:`A(s, a)` and for CWP. advantage_type (str): Advantage function type. The available options are ``['mean', 'max']``. weight_type (str): Filter function type. The available options are ``['binary', 'exp']``. max_weight (float): Maximum weight for cross-entropy loss. n_critics (int): Number of Q functions for ensemble. target_update_type (str): Target update type. The available options are ``['hard', 'soft']``. tau (float): Target network synchronization coefficiency used with ``soft`` target update. update_actor_interval (int): Interval to update policy function used with ``hard`` target update. """ actor_learning_rate: float = 3e-4 critic_learning_rate: float = 3e-4 actor_optim_factory: OptimizerFactory = make_optimizer_field() critic_optim_factory: OptimizerFactory = make_optimizer_field() actor_encoder_factory: EncoderFactory = make_encoder_field() critic_encoder_factory: EncoderFactory = make_encoder_field() q_func_factory: QFunctionFactory = make_q_func_field() batch_size: int = 100 gamma: float = 0.99 beta: float = 1.0 n_action_samples: int = 4 advantage_type: str = "mean" weight_type: str = "exp" max_weight: float = 20.0 n_critics: int = 1 target_update_type: str = "hard" tau: float = 5e-3 target_update_interval: int = 100 update_actor_interval: int = 1
[docs] def create(self, device: DeviceArg = False) -> "CRR": return CRR(self, device)
@staticmethod def get_type() -> str: return "crr"
[docs]class CRR(QLearningAlgoBase[CRRImpl, CRRConfig]): def inner_create_impl( self, observation_shape: Shape, action_size: int ) -> None: policy = create_normal_policy( observation_shape, action_size, self._config.actor_encoder_factory, device=self._device, ) targ_policy = create_normal_policy( observation_shape, action_size, self._config.actor_encoder_factory, device=self._device, ) q_funcs, q_func_forwarder = create_continuous_q_function( observation_shape, action_size, self._config.critic_encoder_factory, self._config.q_func_factory, n_ensembles=self._config.n_critics, device=self._device, ) targ_q_funcs, targ_q_func_forwarder = create_continuous_q_function( observation_shape, action_size, self._config.critic_encoder_factory, self._config.q_func_factory, n_ensembles=self._config.n_critics, device=self._device, ) actor_optim = self._config.actor_optim_factory.create( policy.named_modules(), lr=self._config.actor_learning_rate ) critic_optim = self._config.critic_optim_factory.create( q_funcs.named_modules(), lr=self._config.critic_learning_rate ) modules = CRRModules( policy=policy, targ_policy=targ_policy, q_funcs=q_funcs, targ_q_funcs=targ_q_funcs, actor_optim=actor_optim, critic_optim=critic_optim, ) self._impl = CRRImpl( observation_shape=observation_shape, action_size=action_size, modules=modules, q_func_forwarder=q_func_forwarder, targ_q_func_forwarder=targ_q_func_forwarder, gamma=self._config.gamma, beta=self._config.beta, n_action_samples=self._config.n_action_samples, advantage_type=self._config.advantage_type, weight_type=self._config.weight_type, max_weight=self._config.max_weight, tau=self._config.tau, target_update_type=self._config.target_update_type, target_update_interval=self._config.target_update_interval, device=self._device, )
[docs] def get_action_type(self) -> ActionSpace: return ActionSpace.CONTINUOUS
register_learnable(CRRConfig)