Source code for d3rlpy.algos.qlearning.awac

import dataclasses

import torch

from ...base import DeviceArg, LearnableConfig, register_learnable
from ...constants import ActionSpace
from ...models.builders import (
    create_continuous_q_function,
    create_normal_policy,
)
from ...models.encoders import EncoderFactory, make_encoder_field
from ...models.optimizers import OptimizerFactory, make_optimizer_field
from ...models.q_functions import QFunctionFactory, make_q_func_field
from ...models.torch import Parameter
from ...types import Shape
from .base import QLearningAlgoBase
from .torch.awac_impl import AWACImpl
from .torch.sac_impl import SACModules

__all__ = ["AWACConfig", "AWAC"]


[docs]@dataclasses.dataclass() class AWACConfig(LearnableConfig): r"""Config of Advantage Weighted Actor-Critic algorithm. AWAC is a TD3-based actor-critic algorithm that enables efficient fine-tuning where the policy is trained with offline datasets and is deployed to online training. The policy is trained as a supervised regression. .. math:: J(\phi) = \mathbb{E}_{s_t, a_t \sim D} [\log \pi_\phi(a_t|s_t) \exp(\frac{1}{\lambda} A^\pi (s_t, a_t))] where :math:`A^\pi (s_t, a_t) = Q_\theta(s_t, a_t) - Q_\theta(s_t, a'_t)` and :math:`a'_t \sim \pi_\phi(\cdot|s_t)` The key difference from AWR is that AWAC uses Q-function trained via TD learning for the better sample-efficiency. References: * `Nair et al., Accelerating Online Reinforcement Learning with Offline Datasets. <https://arxiv.org/abs/2006.09359>`_ Args: observation_scaler (d3rlpy.preprocessing.ObservationScaler): Observation preprocessor. action_scaler (d3rlpy.preprocessing.ActionScaler): Action preprocessor. reward_scaler (d3rlpy.preprocessing.RewardScaler): Reward preprocessor. actor_learning_rate (float): Learning rate for policy function. critic_learning_rate (float): Learning rate for Q functions. actor_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): Optimizer factory for the actor. critic_optim_factory (d3rlpy.models.optimizers.OptimizerFactory): Optimizer factory for the critic. actor_encoder_factory (d3rlpy.models.encoders.EncoderFactory): Encoder factory for the actor. critic_encoder_factory (d3rlpy.models.encoders.EncoderFactory): Encoder factory for the critic. q_func_factory (d3rlpy.models.q_functions.QFunctionFactory): Q function factory. batch_size (int): Mini-batch size. gamma (float): Discount factor. tau (float): Target network synchronization coefficiency. lam (float): :math:`\lambda` for weight calculation. n_action_samples (int): Number of sampled actions to calculate :math:`A^\pi(s_t, a_t)`. n_critics (int): Number of Q functions for ensemble. """ actor_learning_rate: float = 3e-4 critic_learning_rate: float = 3e-4 actor_optim_factory: OptimizerFactory = make_optimizer_field() critic_optim_factory: OptimizerFactory = make_optimizer_field() actor_encoder_factory: EncoderFactory = make_encoder_field() critic_encoder_factory: EncoderFactory = make_encoder_field() q_func_factory: QFunctionFactory = make_q_func_field() batch_size: int = 1024 gamma: float = 0.99 tau: float = 0.005 lam: float = 1.0 n_action_samples: int = 1 n_critics: int = 2
[docs] def create(self, device: DeviceArg = False) -> "AWAC": return AWAC(self, device)
@staticmethod def get_type() -> str: return "awac"
[docs]class AWAC(QLearningAlgoBase[AWACImpl, AWACConfig]): def inner_create_impl( self, observation_shape: Shape, action_size: int ) -> None: policy = create_normal_policy( observation_shape, action_size, self._config.actor_encoder_factory, min_logstd=-6.0, max_logstd=0.0, use_std_parameter=True, device=self._device, ) q_funcs, q_func_forwarder = create_continuous_q_function( observation_shape, action_size, self._config.critic_encoder_factory, self._config.q_func_factory, n_ensembles=self._config.n_critics, device=self._device, ) targ_q_funcs, targ_q_func_forwarder = create_continuous_q_function( observation_shape, action_size, self._config.critic_encoder_factory, self._config.q_func_factory, n_ensembles=self._config.n_critics, device=self._device, ) actor_optim = self._config.actor_optim_factory.create( policy.named_modules(), lr=self._config.actor_learning_rate ) critic_optim = self._config.critic_optim_factory.create( q_funcs.named_modules(), lr=self._config.critic_learning_rate ) dummy_log_temp = Parameter(torch.zeros(1, 1)) dummy_log_temp.to(self._device) modules = SACModules( policy=policy, q_funcs=q_funcs, targ_q_funcs=targ_q_funcs, log_temp=dummy_log_temp, actor_optim=actor_optim, critic_optim=critic_optim, temp_optim=None, ) self._impl = AWACImpl( observation_shape=observation_shape, action_size=action_size, modules=modules, q_func_forwarder=q_func_forwarder, targ_q_func_forwarder=targ_q_func_forwarder, gamma=self._config.gamma, tau=self._config.tau, lam=self._config.lam, n_action_samples=self._config.n_action_samples, device=self._device, )
[docs] def get_action_type(self) -> ActionSpace: return ActionSpace.CONTINUOUS
register_learnable(AWACConfig)